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Abstract—Many supervised activity recognition systems 

require a fully labelled time-series for accurate classification. 

However, gathering these labels is a difficult and often unrealistic 

task, especially over long-time frames or outside of laboratory 

conditions. A potential solution is through diary studies, allowing 

for a user-trained activity recognition system. Requests will be 

presented on the user’s smart device and while this approach will 

be significantly less intrusive than current methods, frequent or 

inappropriately timed requests could reduce user acceptance. 

This paper proposes to further reduce user intrusion by making 

a prediction about the next user request and analyzing the 

classifiers confidence in this prediction. Two methods are 

presented, and with careful selection of the confidence threshold, 

they resulted in up to a 35% reduction in user requests with a 

minimal reduction in accuracy.  

Keywords—activity recognition, Random Forest, ECOC-SVM, 

experience sampling 

I.  INTRODUCTION  

As an important part of ubiquitous computing, activity 
recognition is an active research area. Uses are found in 
multiple areas including healthcare, where activity recognition 
can be used for monitoring [1], rehabilitation [2] of patients 
and sports where for exercise tracking [3] and gaming. 

The collection of data annotations is a prominent issue in 
activity recognition systems [4]. Many sensing devices have 
high refresh rates and collecting sufficient ground truth for 
reasonably accurate classification of multiple activities is a 
considerable task. Attempts to solve this problem include the 
combination of diary studies with weakly supervised machine 
learning algorithms [4]. However, requesting excessive input 
from a user could become intrusive.  

This work focuses on increasing the usability of activity 
recognition systems which require user trained data capture 
requests. Usability can be increased by reducing the frequency 
of requests or increasing the time between requests. Two 
methods are proposed, both estimating the confidence in a 
prediction via analyzing an ensemble learners votes. When the 
confidence is above a threshold, the learner’s will use its 
prediction but if the confidence is below a threshold then the 
system will simulate a user request. One potential advantage 
this brings is that with repeated use it is likely that the system 
will become more confident and therefore capable of making 
accurate predictions. However, a potential issue could be the 

computational intensity required for online classification of a 
constant stream of data, and the subsequent retraining of 
classifiers with these newly labelled data points.  

The methodology of the experiments will be presented in 
section III, results will be presented in section IV and the 
conclusion presented in section V. 

II. RELATED WORK 

As a diary study, experience sampling has been used to 
quantify the mood and feelings of an individual. Primarily used 
in the medical field, it works by requesting data from users at 
intervals. Currently, performing activity monitoring through 
questionnaires where patients have to recall activities results in 
lower accuracy rates relative to a laboratory study [5].  As 
experience sampling is an in the moment request, it does not 
require individuals to remember anything but just to record 
their actions or feelings at the moment of request [6].  

Previous work in activity recognition has focused on fixed 
length experience sampling request windows [4]. While 
multiple window lengths ranging from 10 to 180 minutes were 
tested, the system will always make a request once the 
experience sampling time has expired. Weak supervision 
techniques such as Multiple Instance Learning [4], Graph 
Label Propagation [4] and Active Learning [7] are then used to 
populate labels to the unlabeled data points in between the 
request windows.  

Methods have also been presented which populate labels to 
unlabeled data points based on their distance in a feature space. 
These methods in combination with experience sampling 
managed to reduce label requirements by 99.8% while 
maintaining acceptable levels of classification accuracy, but do 
not reduce the intrusion of repeated data requests [8].   

While this is less intrusive than typical activity recognition 
systems which require each data point to be labelled, it may 
become unacceptable to a user over time.  

III. METHODOLOGY 

A. Dataset 

Using the human Activity and Postural Transitions (HAPT) 
dataset [9] allows us to move away from laboratory based 
studies of previous activity recognition experiments and focus 
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Sampling 

Window 

Length 

0 1 5 10 15 20 

Number of 

labels 

7415 302 64 34 24 19 

Accuracy 96.5% 91.1% 84.4% 73.5% 73.8% 71.1% 

Table 2 – Full experience sampling results 

 

on a system which users could potentially use since most 
people now carry some form of smart device. It uses embedded 
smartphone sensors for signal capture, namely an 
accelerometer and gyroscope sampling at 50Hz.  

The human activities performed are standing, lying, sitting, 
walking and walking upstairs/downstairs. The postural 
transitions between the static activities are recorded but are not 
used as they are not a fit for this experiment. 

With 30 participants ranging in age from 19-48 years, 
validation is performed with a user independent 70%/30% 
train/test split. As it is user independent the system will not be 
trained on the same individuals that it is tested on.  

B. Feature Extraction 

The feature set used is pre-computed. The raw signals from 
the embedded sensors are converted into several different time 
series including “body”, “gravity” and signal Jerk. A 561- 
width feature vector is then calculated from this time-series, 
each containing 2.56 seconds of activity data. Example features 
include signal energy, interquartile range, and skewness.  

C. Experience Sampling 

The experience sampling will simulate the collection of 
input from a user. In a real world scenario, a prompt for 
information would be presented on the user’s device, however 
this experiment is being performed on previously captured 
data. This is accomplished by accessing the full ground truth 
and obtaining a label for the current feature vector. 

The sampling window is going to be made up of 1, 5, 10, 
15 and 20-minute intervals. While a longer sampling window is 
going to be better from a real-world feasibility perspective, it is 
unlikely that enough data is available in the dataset.  

Before the system can begin to estimate its confidence in 
future data points it will first need to gather some initial data. 
This is performed by having a “training phase”. This training 
phase will simulate the collection of 5 annotations at 5-minute 
intervals. The same training phase will be applied to each size 
of experience sampling window, so each will have the same 
starting data. It has been shown in previous studies that many 
users are fine with completing a short training segment if it 
reduces future interruptions [10].  

An obvious problem with this method of data collection is 
that the device moves when the user is going to input data. For 
example, if the user is currently sitting and the device requests 
input. The motion of moving the phone from a pocket and 

typing the name of the activity would be incorrectly labelled as 
sitting. Potential solutions to this problem are to detect an 
extended period of the same activity and make a request which 
states “what activity were you performing X minutes ago?” 

D. Confidence 

Two methods are used for confidence classification. One 
which uses reduces the number of requests and another which 
attempts to classify each individual data point while 
maintaining a minimum distance between data requests.  

For each of these methods, the Random Forest classifier 
[11] is first trained on the labelled feature vectors gathered 
from the training phase. To ensure that each experiment is 
repeatable, the random seed has been set to 1. Classifier 
confidence can then be inferred by averaging these votes, and 
the classifier retrained each time a new label is gained. While 
likely to result in some noisy labels, tuning of a threshold value 
will be key. The ideal value being low enough to allow the 
system to make predictions but also high enough to reduce the 
likelihood of incorrect labels.  

The systems earliest predictions are those most likely to be 
incorrect. This is because the system will not yet have much 
data. To reduce this problem each method will also use a 
weighted threshold. Increasing the required threshold during 
early predictions and as the system learns more, the threshold 
will be reduced.  

1) Method one 
This method attempts to reduce the number of user requests 

by making a prediction at each of the experience sampling 
request points. The request points will be at fixed times, for 
example, every 5 minutes. At each of these requests, the 
classifier will make a prediction and if the average of the votes 
of this prediction are above a threshold value then it will be 
accepted. Otherwise, it will request input from the user. 

2) Method two 
This method, instead of looking at data points in fixed 

sampling windows, looks at each individual data point. 
Confidence will be measured of each data point and if 
confidence is below the threshold user input will be requested. 

 
Method One – 5 Minute Sampling Window  Method Two - 5 Minute Sampling Window 

Confidence User 

Requests 

Predictions Incorrect Predictions Confidence User 

Requests 

Predictions Incorrect Predictions 

50% 23 36 18 50% 7 6719 5617 

60% 43 16 2 60% 30 6472 4104 

70% 49 10 0 70% 53 3638 1209 

80% 56 3 0 80% 56 1643 364 

90% 59 0 0 90% 58 120 0 

Table 1 – Tuning the prediction threshold 

 



Limitations will be put on the number of requests made, and 
the system will only be able to make a request if a minimum 
period of time has passed since the previous request. 

It is likely that a higher confidence threshold will be 
required for this method as significantly more data points are 
being checked, bringing a higher chance of noisy labels.  

E. Classification 

Previous work into activity recognition has had success 
using Support Vector Machines (SVM) for classification. As 
this work uses several activities, it would be advantageous to 
have a multi-class SVM. For this reason, an error-correcting 
output codes SVM (ECOC SVM) is being used. 

IV. EXPERIMENTS 

A. Full Experience Sampling 

To find the maximum possible accuracy experience 
sampling alone can achieve, the experiment will be run without 
either method active. A sampling window of 0 represents 
standard supervision with each feature vector having a label. 

As is visible from table 2, the shorter experience sampling 
windows performed better as more data is available. A 1-
minute sampling window significantly reduces the number of 
labels required while maintaining an accuracy of 91.1% 

Finding the ideal value for the prediction threshold will be 
key for ensuring the best results. It will be tuned individually 
for each method, as the second method is likely to require a 
much stricter value. For both methods, the threshold will be 
tuned to the 5-minute sampling window, as it provides 
significantly less data than standard supervised and is also 
unlikely to run into insufficient dataset problems. 

a) Method one 

The results in table 1 show that having a very high 
threshold will reduce the number of incorrect predictions, but it 
also reduces the overall number of predictions made. While 
60% has reduced the number of requests by the largest amount, 
it has resulted in two incorrect predictions. 70% however has 
still reduced the number of predictions by 17%, but also has 
not made any incorrect predictions.  

b) Method two 

As is visible in table 1, the confidences required for the 
second method are higher. Anything below 90% results in an 
unacceptably high number of incorrect predictions which are 
likely to cause classification problems.  

While 90% only reduces the overall number of user 
requests by 1 relative to method one at this threshold, it 

provides an extra 120 successfully labelled feature vectors 
which could potentially increase classification accuracy.  

B. Results 

The following section will introduce and provide a 
comparison of the results of the two methods running on the 
HAPT dataset. 

1) Method one 
Table 3 shows that with the lower sampling window 

lengths, the number of predictions is successfully reduced. The 
1, 5 and 10-minute sampling windows having the number of 
requests reduced by 35%, 16%, and 9% respectively.  

The longer windows showed less success, with the 15-
minute window only providing 1 correct prediction and the 20-
minute window providing no correct predictions. It is possible 
however that these problems are being caused by the length of 
the dataset. 

When compared with the results found in table 2 we can 
see that the results of this method are almost identical to the 
full experience sampling classification accuracies. The 2 
incorrect predictions on the 1-minute sampling window only 
resulted in an overall accuracy reduction of 0.1%.  

2) Method two 
Table 3 shows that the second method provides more data 

for the classifier when the sampling window is kept to 10-
minutes or below. In the 1, 5 and 10 minute sampling windows 
it provides 1546, 120 and 459 extra features for the classifier. 
Like method one, the longer 15+ windows gained no benefit 
from this method. Similar to the first method, the number of 
user requests relative to experience sampling was reduced but 
not by the same margin. 

3) Comparison 
Both the first and second method managed to reduce the 

number of user requests relative to experience sampling. 
However, method two has provided the benefit of significantly 
more labelled feature vectors providing a slight increase in 
accuracy. 

With the 5 minute window length, method two has reduced 
the number of requests by 9% and has gathered a much higher 
number of successful predictions than method one. Unusually 
though the classifier accuracy has gone down. This could be 
because while the experience sampling and method one collect 
the same labelled feature vectors, the second method can pick 
different feature vectors for labelling. It is possible that the 
feature vectors selected provided less discriminative data.   

The 10-minute window lengths have a similar number of 
requests for both methods, however, method two made 459 

 
Method One  Method Two 

Sampling window length 1 5 10 15 20 Sampling window length 1 5 10 15 20 

Total sampling requests 302 64 34 24 19 Total sampling requests 1844 183 491 21 16 

User requests  191 49 26 18 11 User requests  286 58 27 16 11 

Predictions 106 10 3 1 3 Predictions 1553 120 459 0 0 

Incorrect predictions 2 0 0 0 3 Incorrect predictions 7 0 0 0 0 

Classifier Accuracy 91.0% 84.4% 73.5% 73.8% 66.7% Classifier Accuracy 91.2% 79.6% 76.8% 72.3% 63.2% 

Table 3 – Prediction and Classification results 

 



1 Minute Sampling Window  10 Minute Sampling Window 

Activity Walking Walking 

Upstairs 

Walking 

Downstairs 

Sitting Standing Laying Activity Walking Walking 

Upstairs 

Walking 

Downstairs 

Sitting Standing Laying 

Full Experience 

Sampling 

99.6% 90.2% 85.2% 80.5% 89.6% 99.8% Full 

Experience 

Sampling  

94% 67.1% 71.9% 98.4% 14.2% 98.7% 

Method One 97.8% 91.3% 85.7% 80.5% 89.6% 99.8% Method One 94% 67.1% 71.9% 98.4% 14.2% 98.7% 

Method Two 98.8% 95.1% 87.6% 68.5% 96.2% 99.8% Method Two 88.9% 91.1% 33.8% 78.9% 61.7% 99.8% 

Table 4 – Individual activity results 
 

more successful predictions than method one. These extra 
predictions also increased the classifier accuracy slightly.  

Longer windows (15+ minutes) simply do not have enough 
information for sufficient training of the classifier. The first 
method managed to make a few predictions, however, most of 
them are wrong. The second method managed no predictions 
for the longer windows, likely caused by the combination of 
the high threshold plus the lack of training data meaning the 
classifier will never be confident in any predictions.  

The first method performs very well in reducing the 
number of user interruptions, especially at the lowest 
experience sampling window lengths. At the one minute 
window length it has reduced the number of requests by 35% 
with minimal effect on accuracy. However, the second method 
performs better at classification and prediction. It reduced the 
number of requests relative to experience sampling but not by 
the amount that method one managed. It is possible in a real 
world scenario that the number of requests made will decrease 
quicker with the second method due to the amount of extra data 
it is providing to the classifier. Another issue noted is the 
performance cost of the second method, as it is continually 
providing an online prediction of each data point and retraining 
the classifier where required. Its performance impact is 
significant. This could be a serious problem on smart devices 
as it will impact both the performance of the device and its 
battery life. 

Table 4 shows the classification accuracy for each 
individual activity for the 1 and 10-minute experience sampling 
windows. For the 1-minute windows, we can see that method 
one matches or exceeds the classification accuracy of the 
experience sampling method and this is achieved with 
significantly less user intrusion. The second method managed 
to exceed the performance of method one and experience 
sampling in all but sitting and laying activities. Although not 
reducing user intrusion as much as method one, it still uses 5% 
fewer requests than full experience sampling. For the 10-
minute sampling window, method one and experience 
sampling performed the same, except method one achieved this 
performance with 9% fewer user requests. The second methods 
results are difficult to compare as it would have found different 
feature vectors than the fixed feature vectors of the experience 
sampling and method one. It performed better on walking 
upstairs, standing and laying, but the remaining activities have 
seen reductions, especially walking downstairs.  

V. CONCLUSION 

This paper presents a solution to the problem of user 
interruptions in diary study methods of activity recognition. 
Two methods have been developed which attempt to solve the 
problem in separate ways. The first method has shown an up to 

35% decrease in the number of user requests while maintaining 
comparable levels of classification accuracy to methods which 
have higher levels of user intrusion. The second method also 
reduced the number of requests but not to the degree of the first 
method. It did however, provide significantly more labelled 
feature vectors which increased the classification accuracy in 
some instances. 

As the intended usage of these methods is on smart devices 
where users can be provided with a minimally intrusive 
personalized system of activity recognition, the second method 
will need to be refined to reduce its performance impact. 
Potential ways of doing this could be through reducing the 
number of feature vectors which are predicted upon or only 
retraining the classifier after a certain number of predictions 
have been made. Future work could look at methods which can 
predict the state of the user to further reduce intrusion. These 
could be capturing data from the user about their tolerance to 
interruption and attempting to find activities or time frames 
where it is appropriate to ask for input.  

VI. REFERENCES 

[1] S. Jiang et al., “CareNet: An Integrated Wireless Sensor Networking 
Environment for Remote Healthcare,” in Proceedings of the 3rd 

International ICST Conference on Body Area Networks, 2008. 

[2] E. J. W. Van Someren et al., “A new actigraph for long-term registration 

of the duration and intensity of tremor and movement,” IEEE Trans. 

Biomed. Eng., vol. 45, no. 3, pp. 386–395, 1998. 

[3] N. Alshurafa et al., “Designing a Robust Activity Recognition 

Framework for Health and Exergaming Using Wearable Sensors,” IEEE 

J. Biomed. Heal. Informatics, vol. 18, no. 5, pp. 1636–1646, 2014. 
[4] M. Stikic, D. Larlus, S. Ebert, and B. Schiele, “Weakly supervised 

recognition of daily life activities with wearable sensors,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2521–2537, 2011. 

[5] R. J. Shephard, “Limits to the measurement of habitual physical activity 

by questionnaires,” Br J Sport. Med, vol. 37, pp. 197–206, 2003. 

[6] S. Consolvo and M. Walker, “Using the experience sampling method to 

evaluate ubicomp applications,” IEEE Pervasive Comput., vol. 2, no. 2, 

pp. 24–31, 2003. 
[7] M. Stikic, K. Van Laerhoven, and B. Schiele, “Exploring semi-

supervised and active learning for activity recognition,” 2008 12th IEEE 

Int. Symp. Wearable Comput., pp. 81–88, 2008. 

[8] W. Duffy, K. Curran, D. Kelly and T. Lunney “Addressing the problem 

of Activity Recognition with Experience Sampling and Weak Learning,” 

in In IntelliSys 2018 - Proceedings of 2018 SAI Intelligent Systems 

Conference., 2018. (Accepted, awaiting publication) 
[9] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, 

“Transition-Aware Human Activity Recognition Using Smartphones,” 

Neurocomputing, vol. 171, pp. 754–767, 2016. 

[10] A. Kapoor and E. Horvitz, “Experience sampling for building predictive 

user models,” Proceeding twenty-sixth Annu. CHI Conf. Hum. factors 

Comput. Syst. - CHI ’08, pp. 657–666, 2008. 

[11] Leo, “Random Forest,” 2012. [Online]. Available: 

https://uk.mathworks.com/matlabcentral/fileexchange/31036-random-
forest. 

 


